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SUMMARY

This report provides a method for estimating the upper limit of the
variability parameter of Two- and Three-Level symmetrical Bruceton (stairstep)
sensitivity tests, at a selected confidence level. Previously, it was impossible
to make such an estimate.

The method for estimating the variability parameter, as described in this
report, should be of interest to all persons making probability predictions of
safety and/or reliability based on the results of a Bruceton test.
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BACKGROUND AND DISCUSSION

In Go/No-Go or "fire"/"fail" explosive sensitivity testing, one type of data
collection procedure employed is the Brucetonl, or stairstep test. The sample
elements are tested sequentially at various stimulus (testing) levels. These
testing levels are chosen before firing, and are set at equally spaced
stimulus-intensity levels. If a "fire" results, the test stimulus for the next
element is decreased to the next lower level. Similarly, if a "fail" occurs,
the test stimulus for the next element is increased to the next higher level.
This procedure is continued with successive sample elements until the sample has
been expended.

This testing scheme yields a stairstep pattern such as shown in Figure 1.
It should be noted that the nature of the Bruceton firing plan is to concentrate
testing near the 50% firing point, in order to obtain a good estimate of the mean
or 50% response point.

TEST
LEVEL

4 x

, 3 x o xZ 0
• 2x o o x

1 x 0

Z 0

1 2 3 4 5 6 7 8 9 10 11

SHOT NUMBER

x=GO o = NO GO

FIGURE 1 TYPICAL BRUCETON TEST RESULT

iStatistical Research Group, Princeton University, "Statistical Analysis
for a New Procedure in Sensitivity Experiments", AMP Report 101.1R, SRG-P
No. 4, (OSRD Report 4040), July 1944.
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Mathematical Convention. In the following discussion, the convention will
be used wherein a Greek letter will represent a population parameter and the
corresponding English letter will denote the estimate of that population parameter
(Table 1).

S

Table 1. Symbols Used to Represent Statistical Measures

POPULATION ESTIMATE OF PARAMETER
PARAMETER POPULATION IDENTIFICATION

PARAMETER

Sm Level of 50% response;
the symbol 7, or more
properly x50, frequently
is used to represent
the population estimate

t Variability parameter;
distribution function
not specified

s "Standard deviation";*

variability parameter for
Gaussian distribution

y g Variability parameter for
logistic distribution

Description of a Problem. In a Go/No-Go testing situation, it is necessary
that levels of stimulus intensity be chosen so that both fires and fails will
be observed at one or more test levels. Implicit in the process of setting the
levels is a series of a-priori guesses required of the experimenter:

(a) the distribution function which best describes the population;

(b) the location of the population 50% firing level, p (the estimate
is mi); and

(c) the magnitude of the variability parameter, T (the estimate
is t) of the population distribution function.

*In the field of statistics, the symbol a2 customarily designates the variance,

or second moment of a distribution about the origin. Common practice in the
field of explosives characterization has restricted the application of a (the
square root of the variance) to the normal or Gaussian distribution and will be
so used in the present and companion reports.

8
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The usual test design locates the test levels symmetrically about the presumed
50% point and makes the spacing between levels (the step size) equal to some
constant times the presumed magnitude of the variability parameter. The starting
point of the sequential test is at the presumed 50% point.

While the problems of choosing the correct distribution function are not
the concern of the present report, the problems encountered in selecting the
starting point and step size are. The further the starting point is from the
true 50% point, the less efficiently will the samples be expended. In the extreme
case the samples would either all fire or all fail, giving virtually no usable
information. If the step size is ill-chosen--too large or too small by a factor
of 4 or more--there could be difficulties in obtaining meaningful analyses 2

or even in performing the test. Even if the presumed 50% point were fortuitously
chosen (located at, or very near to, 11), a too-large step size is apt to give
rise to a Two-Level or Three-Level Bruceton*. The calculated value of the vari-
ability parameter for Two-Level and symmetrical Three-Level Brucetons becomes
indeterminate using standard Bruceton procedures. Non-symmetrical Three-level
Brucetons, however, can be analyzed in the usual way. The above-mentioned
analytical indeterminacy is the aspect to which the present report is addressed.
Appendix A demonstrates how the indeterminacy comes into being.

Problem Relevance. Over the last two decades it has been the authors'
frustrating experience repeatedly to encounter indeterminate Bruceton runs
of the above type. That this should be so is the natural outcome of one of the
objectives of ordnance development--namely, to improve product quality by reducing
product variability. Indeed, small values of s (or g) have been taken as a direct
indication of successful effort. Such Two- and Three-Level Brucetons appear
when the variability parameter is very small compared to the smallest practical
test step size, as may easily be found to be the case in such sensitivity tests
as the Small Scale Gap Test (SSGT), Large Scale Gap Test (LSGT), Bruceton Impact
Test, and some types of EED (Electro-Explosive Device) testing.

OBJECTIVE

The underlying principles, and the concepts, for solving the problem of
Two- and Three-Level Brucetons are intuitively evident and, in actuality, quite
simple to understand. This report contains a rigorous and detailed development
of procedures for analyzing heretofore intractable data. To facilitate reading
and understanding, we submit the following ideas.

"Quantal Statistics" deals with the study of Yes/No; Go/No-Go; Heads/Tails;
Fire/Fail probabilistic events. We know that a "true" coin will, on the average
of many, many tosses, turn "heads" as often as "tails": that is,

L. D. Hampton, G. D. Blum, and J. N. Ayres, "Logistic Analysis of Bruceton

Data," NOLTR 73-91, July 1973.

*A Two-Level Bruceton: only fires at one level, only fails at the other;
Three-Level Bruceton: an additional middle level having both fires and fails;
symmetrical Three-Level Bruceton: the number of fires at the all-fire level
equals the number of fails at the all-fail level.

9
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p(H)--- p(T)- -50% as N, the number of tosses,---

The likelihood of observing identical outcomes for N tosses would be the product
of the individual likelihoods of that particular outcome for each toss:

for 3 Heads

p(a) = p(H)-p(H)-p(H) = 12.5%

for N Heads

p(a) = p(H)N = (0.5)N

The situation becomes more complex when dealing with the quantal properties
of explosive devices, whether they be detonators, fuzes, boosters, warheads, or
whatever. The probability of firing can range between the limits of 0.0 and 1.0
(between 0 and 100%), this probability being a function of some input stimulus
such as energy, voltage, drop height, velocity at impact, etc. The usual procedure
is to perform an experiment and deduce from the resulting data the functional
relationship between the input stimulus and the expected response to the stimulus.

If we were to watch an experiment in progress wherein we saw a coin come
up heads 10 times in a row--the likelihood of such an event being 0.0977%--we
would be justified in questioning such things as the trueness of the coin and
the conditions of the experiment, before being willing to accept the fact that
a 1-in-lO00 chance event actually had occurred.

In a firing test, were we to observe a number of fires and no fails at a
particular stimulus level, we would tend to suspect that the 50% stimulus level
(a parameter that is almost always desired) might be some quantity less than
the test level. The greater the number, j, of all fires thus observed, the stronger
the basis for this surmise. This is a natural outcome from the fact that the
probability of occurrence of such a saturated (all fired, none failed) response
at a particular level, Lxq is cJ, where c is the probability of a single fire
at that stimulus level. For the reader's convenience, the interrelationship
between c, j, and ci has been displayed in Figure 2.

For instance, assume that 25 fires (no fails) had been observed at some
stimulus level. The chance that the individual probability of a fire, c, was
as low as 50% is vanishingly small (less than 0.01%). The probability of such
a happening would be somewhat less than 1 in 10, if the individual probability
were as low as 90%. Intuitively we believe that the 50% functioning level must
be below the testing level.

Then, if at some level lower than this "all fired, none failed" level, we
obtain a similar number of "all failed, none fired" responses, we would intuit
that we had bracketed the location of the mean, or 50% firing point, somewhere
between the two test levels.

10
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CJ=99.999 -0

NOTE: /t
PROBABILITIES ARE EXPRESSED CJ=99.99-"

AS PERCENTAGES

C L=99.9 -C-------- 
C=99.9999

Lc=99.999

C J=99.0------- ---

L c=99.99

C J=90.0 - --

L. C=99.9

C =50.0 ----- - -

-c=gso

CJ=l.o

WHERE:
Cj IS THE EXPECTATION OF OBSERVING

CJ=o0.1- .... j BINARY EVENTS, ALL OF THE SAME KIND WHEN

C IS THE PROBABILITY OF OCCURRENCE OF ONEc EVENT OF THAT KIND.

4 6 10 25 50 1o00

L C=10.0 C=50.0

(U) FIGURE 2 VISUALIZATION OF THE PROBABILITY OF OBSERVING
A SATURATEbBINAHY OUTCOME, C J.
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Furthermore, our intuition leads us to believe that we should be able to
obtain a measure of how variable a product we are testing, from the spacing

between these two "saturated" levels. If the two levels are close together (however

we judge closeness), we note that only a slight shift in stimulus level may cause
a change from a low to a high probability of firing. The further apart the two
levels, the more variable is the product likely to be.

The objective of the remainder of this report is to couch these concepts

in quantitative probabilistic terms.

EXPOSITION

Hypothetical Example. To illustrate the nature of the problem and the logic
that will be used in subsequent derivations, a set of data has been generated
for an imaginary experiment:

(a) A Two-Level Bruceton yielded 10 fires at test level L and
10 fails at level L; x

(b) L was set at 120, and L at 80;x O
(c) The distribution function was logistic2,3 with the general form

In = Inp x-P (1)q1-

where p is the probability of a fire at stimulus level x, and q
is the probability of a fail at that same stimulus level. The

following equations are applicable for the hypothetical experiment:

tn (2)

b _ L 0 -In 77 -'- (3)

p(A) = (a) 10
p(B) = (1-b) ; and

p(R) = p(A) • p(B)

Where:

a is the probability of a fire at Lx
b is the probability of a fire at Lo
p(A) is the probability of observing 10 fires at Lx
P(B) is the probability of observing 10 fails at Lo
p(R) is the probability of observing 10 fires at Lx

together with 10 fails at Lo

3J. N. Ayres, L. D. Hampton, I. Kabik, and A. D. Solem, "VARICOMP: A Method

for Determining Detonation Transfer Probabilities," NAVWEPS Report 7411, July 1961.

12
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The objective is to find those values of p and y for which the test

outcome, 10 fires at Lx and 10 fails at Lo, reasonably could have been expected.

The probability, p(R), of this outcome was computed for: p at 100--midway

between Lx and Lo--, also at 85, 90, 95, 105, 110, and 115; and for y at

10, 7, 5, 3, 2, 1.5, and 1.0. This probability is displayed in the upper

portion of Table 2, while p(A) and p(B) are in the lower portion. From the

table, the following relationships are evident:

(a) The probabilities p(R), p(A), and p(B) all decrease as y increases;

L +L

(b) As p increases from the midpoint, x-7 0-, to Lx, for a fixed value

of y, both p(R) and p(B) decrease while p(A) increases.

(c) By the symmetry of the distribution function it follows that as
decreases from the midpoint to Lo, for a fixed value of y, p(R)
and p(B) decrease while p(A) increases.

To decide if a two-level test can reasonably be expected, we arbitrarily

answer in the affirmative if its probability of occurrence is 95% or higher. This
means that a Two-Level Bruceton will be likely for any combination of P and y

for which p = 0.05. For instance, at y = 10 it can be seen, from Table 2, that

we should accept as possible, the situation where p could be 95, 100 or 105
since p(R) would be 0.0606, 0.07898, or 0.0606 respectively. But at P = 85,

90, 110, or 115 the situation must be considered as unlikely, the probabilities
being 0.00648, 0.0268, 0.0268 and 0.00268 respectively. It is also evident,

because of the symmetry of the distribution function, that when P is at the
midpoint there will be a maximum value of y above which p(R) will always be

less than 0.05. Though not given in the table, this latter value must be
somewhat in excess of 10. Relationships such as the above are summarized

qualitatively in Figure 3 for the more general case.

Location of the 50% Point. Test levels at which all of the units did fire
or else at which all of the units did not fire are termed saturated levels. In
the hypothetical example just considered, Lx and Lo were both saturated levels.
When the number of tests at both of the saturated levels* is large enough, the

50% point is likely to be found in the interval between them; this likelihood

approaches certainty as the number of tests at each of the two levels increases.
To demonstrate this, the following reasoning is offered:

(1) Let the upper saturated stimulus level be designated Lx;

Let c be the tru probability of firing at Lx;
Let j be the number of tests at Lx;

Let p(C) be the expected probability of observing j fires in j
tests at L

x

*There can and must be two and only two saturated levels in a proper Bruceton

test, and these levels define the uppermost and lowest stimulus values used

in the Bruceton test. In Figure 1 there was only a single test at each of
the extreme levels. Here we address ourselves to those cases where the number

of tests at each of the two levels is half a dozen or more.

13
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Table 2. Various Probabilities Associated with the Hypothetical Example

(Note: Probabilities are expressed as percent.)

Y

10.0 7.0 5.0 3.0 2.0 1.5 1.0

85 0.646 1.74 4.32 17.73 45.43 70.43 93.51

90 2.68 10.18 27.41 70.39 93.50 98.74 99.955

95 6.06 24.99 57.53 93.29 99.43 99.955 99.9997

S100 7.90 32.73 69.56 97.50 99.810 99.9968 99.9999+

105 6.06 24.99 57.53 93.29 99.43 99.955 99.9997

110 2.68 10.18 27.41 70.39 93.50 98.74 99.955

115 0.646 1.74 4.32 17.73 45.43 70.43 93.51

Table 2a. p(R) as a function of V and y

Y

10.0 7.0 5.0 3.0 2.0 1.5 1.0

p(A) 74.27 93.51 99.09 99.9914 99.9999+ 99.9999+ 99.9999+
85

p(B) 0.87 1.86 4.36 17.73 45.53 70.43 93.51

p(A) 61.52 87.22 97.55 99.95 99.9997 99.9999+ 99.9999+
90

p(B) 4.36 11.67 28.10 70.43 93.51 98.74 99.95

p(A) 45.43 75.78 93.51 99.76 99.976 99.9999+ 99.9999+
95

p(B) 13.34 32.98 61.52 93.51 99.45 99.955 99.9997

Sp(A) 28.10 57.21 83.40 98.74 99.955 99.9984 99.9999+
100

p(B) 28.10 57.21 83.40 98.74 99.955 99.9984 99.9999+

p(A) 13.34 32.98 61.52 93.51 99.45 99.955 99.9997
105

p(B) 45.43 75.98 93.51 99.76 99.976 99.9999+ 99.9999+

p(A) 4.36 11.67 28.10 70.43 93.51 98.74 99.95
110

p(B) 61.52 87.22 97.55 99.95 99.9997 99.9999+ 99.9999+

p(A) 0.87 1.86 4.36 17.73 45.53 70.43 93.51
115

p(B) 74.27 93.51 99.09 99.9914 99.9999+ 99.9999+ 99.9999+

Table 2b. p(A) & p(B) as a function of U and y

14
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(2) Let the lower saturated stimulus level be designated Lo;
Let d be the true probability of firing at Lo;
Let k be the number of tests at Lo;
Let p(D) be the expected probability of observing k fails at k

tests at L
0

(3) Let p(Q) be the probability of the composite outcome of j fires
in j tests at L, and k fails in k tests at L

p(C) = cj (4)

p(D) = (1 - d)k (5)

p(Q) = p(C) • p(D). (6)

Wishing to deduce the actual location of .i we list all possibilities:

Sl = p = L (7)x

S2 = P > L (8)x

S3 =fi = L (9)0

S4 = j < L (10)0

S5 = L > > L (11)
x O

Sl: If j = Lx then c = 0.5, and if j > 6 then p(C) < 0.0125.* Since p(D) can
be no greater than unity, p(Q) < 0.0125.

S2: If p > L then c < 0.5, and p(C) and P(Q) will be less than for Case Sl.x

Sl and S2: Cases Sl and S2 indicate that if the true mean were on or above Lx,
the probability of observing j fires out of j trials at Lx will be
no greater than 0.0125 (independent of whether or not k fails were
observed out of k trials at Lo). Therefore we do not expect that
a Two-Level or symmetrical Three-Level Bruceton outcome could occur
under such conditions.

S3: If p = Lo then d = 0.5, and if k > 6 then p(D) < 0.125.* Since p(C) can
be no greater than unity, p(Q) < 0.0125.

S4: If 1 = L then d > 0.5, and p(D) and p(Q) will be less than for Case S3.
0

*Table 3 has been prepared to show the probabilities p(C) and p(D) as functions
of j and k, respectively.

15
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L Lx

LAQ
00 >. jr I

I I
SF-

INCREASING
STIMULUS

LOCATION OF/p INTENSITY

FIGURE 2 CONCEPTUAL DIAGRAM OF VALUES OF pAND 7- FOR WHICH A
TWO-LEVEL BRUCETON OUTCOME CAN BE EXPECTED.

NOTES: (1) Possible combinations of values are indicated by
crosshatched area

(2) The distribution function will be monotonically
increasing but not necessarily symetrical about/I

(3) T will be positive and non-zero
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Table 3. Probability of Observing a Saturated Response at a Level
When the 50% point, p, is located at that level

(Note: Probabilities are expressed as "Chance in a million of observing
the predicated outcome")

j p(C) k p(D)

6 15,625 6 15,625

8 3,906 8 3,906

10 977 10 977

15 30.5 15 30.5
20 0.953 20 0.953

30 9.43 x 10- 30 9.43 x 10

50 8.88 x 10-10 50 8.88 x 10-10

100 7.88 x 10-25 100 7.88 x 10-25

Table 3a. Likelihood of Table 3b. Likelihood of

observing j fires out of observing k fails out of
j trials at level Lx, k trials at level Lo, when L°
when Lx is located at -p is located at p

17
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S3 and S4: Cases S3 and S4 indicate that if the true mean were on or below

Lo, the probability of observing k fails out of k trials at Lo will

no greater than 0.0125 (independent of whether or not j fires were

observed out of j trials at Lx). Therefore, we do not expect that

a Two-Level or symmetrical Three-Level Bruceton outcome could occur

under such conditions.

$5: If a Two-Level or a symmetrical Three-Level Bruceton outcome has been

observed, and if j > 6 and k > 6, then since Cases Sl, S2, S3 and S4 have

each been shown to be highly unlikely, we can conclude that the only likely

location for p is in the region Lx > p > Lo. Furthermore, the larger that

j and k are, the more certain we can be of our conclusions.

Conservative Estimate of T. We wish to be able to make a conservative

estimate of T. For the purposes of both safety and reliability computation, the

largest value of T consistent with experimental results would yield the most

conservative estimates either of the level high enough to assure the required

functioning rate--reliability--or low enough to assure that functioning will not

take place--safety.

If, as is stipulated in the following derivation, the distribution function

is symmetrical about p, then the estimate of T will be maximized by the assumption

that 1 is midway between the saturated levels. The preceding sentence is true,

only if the number of fires at Lx and the number of fails at Lo are equal. As

will be seen further on, this condition will be satisfied by the operation of

equation (13). With suitable transformations, the Gaussian and logistic

distributions, both of which are symmetrical about the mean, are almost always

the distribution-functions of choice in explosives and ordnance sensitivity,

reliability, and safety characterizations. Implicit in the concept of symmetrical

distribution functions is the assumption of zero dud-rate* of the material under

test. No attempt is made in this report to assess the effect of, or to compensate
for, non-zero dud rates.

With the estimate of T being maximized by forcing the estimate of P to be

at the midpoint:
* L +L

S x 0 (12)

the consequent limited error in the estimate of p would have to be accepted; but

this error usually can be compensated for, and, oftentimes, turned into an

advantage. Because p has been localized as being almost certainly between the
L - L
x o

two saturated levels, the magnitude of the error will be less than o

Once T has been determined, further conservatism usually can be introduced by

setting m = Lx for extrapolating to an upper level, at which a high degree of

reliability is to be expected; or m = Lo for extrapolating to a lower level, at

which a high degree of safety is to be expected. We caution that sometimes this

strategy may be counterproductive simply because there might not be much excess

reliability demonstrable even though the system being tested may be inherently

highly reliable.

*The term "zero dud-rate" means that all devices will function when given an

adequate stimulus.

18
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DERIVATIONS

Derivation, Logistic Distribution Assumed. The following exposition of
statistical relationships will develop numerical methods which can be used to
calculate 95% confidence estimates of •j. An alternative derivation is to be found
in Appendix B.

As previously explained (equation 12), m, the estimate of p, is arbitrarily
set at the midpoint between Lx and Lo. The number of trials, j at Lx and k at
Lo, will either be equal or will differ only by one. Without loss of generality
it is convenient to deal with the various parameters at only the two levels Lx
and m; such is permissible if the number of trials at Lx is redefined to be:

N = min j , k ; (13)

where N is the lesser of j or k.

The true firing probability of Lx is represented by c. Its conservative
estimate, p, has the property that p < c, at 95% confidence; that is, we state
that the true firing probability will not be less than p, with only one chance
in twenty of this statement's being in error. Evaluation of p can be done by
binomial statistics. The general equation4 for determining the lower limit
of reliability at a given confidence is:

K K I K- (14)

E-C x pL l L
x = r

where C is the desired confidence
PL is the lower limit of

reliability

x is a summing parameter

r is the number of successes
K is the total number of trials

For the purposes of this report, at level Lx, PL becomes p, and r is equal to N.
And because this is a saturated level, k is also equal to N, such that equation 14
becomes

N1 C p (15)

and

0 C)I/N (16)

Replacing 11 and y with their estimates, m and g, in equation (1) yields:

in p x m (17)

4 J. R. Cooke, Mark T. Lee, and J. P. Vanderbeck, "Binomial Reliability Table
(Lower Limits for the Binomial Distribution)," NAVWEPS Report 8090, January 1964.

19
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and, in the present case,
L - m

in p x (18)
i -p G

Where G is the single-sided confidence limit for the upper bound of all possible

values for g, the estimate of y.
4

By setting C equal to 0.95 and substituting equation (16) into equation (18),

G can be evaluated:
L -m

G =x (19)

in (0. 0 5 )I/N - In (I - (0.0 5 )/N) 
(1

By combining the above with equation (12), the test data can be used directly:

L -L
Gx (19a)

2 In (0.05)/N - 2 In (1 - ( 0 . 0 5 )I/N)'

or

G = (L -L )H, (19b)x O

where H is a function of N. Values of H can be found in Table 4.

Derivation, Normal Distribution Assumed. To develop similar relationships

using the Gaussian distribution the following equation can be used:

L m (i - C) 1/N (20)

where F is the single-sided 95% confidence limit for the estimate of a, and
repres,=,ts a Gaussian cumulative distribution function which transforms

probabilities into normits. The normit value is the number of standard
deviations between the 50% level and the probability level under consider-

ation. Although the function , cannot be expressed in analytic form it can

be found in many tables of mathematical functions; it is also available in some

of the more sophisticated present-day hand-held calculators.

Operating at 95% confidence, the equation becomes:

L - m L - L
F x x N (21)

4(0.05)11N 2 ¢(0.0 5 )1IN

or

F = (L - L ) R, (21a)

where R, as a function of N, is given in Table 4.
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Table 4. Table for Use in Computation of G in a Logistic Probability Domain,
or of F in a Gaussian Probability Domain

N H R N H R N H R

5 2.5283 4.0375 18 0.29260 0.4891 150 0.12809 0.2429

6 1.1506 1.8422 20 0.27432 0.4611 200 0.11923 0.2300

7 0.79729 1.2811 22 0.25974 0.4389 250 0.11317 0.2212

8 0.63357 1.0226 26 0.23778 0.4056 300 0.10866 0.2147

9 0.53822 0.8717 30 0.22186 0.3814 400 0.10224 0.2054

10 0.47534 0.7730 35 0.20703 0.3593 500 0.09776 0.1989

11 0.43050 0.7028 40 0.19577 0.3925 750 0.09056 0.1884

12 0.39673 0.6501 50 0.17955 0.3184 1000 0.08607 0.1819

13 0.37028 0.6090 60 0.16823 0.3016 2000 0.07689 0.1684

14 0.34893 0.5759 70 0.15975 0.2892 3000 0.07237 0.1617

15 0.33127 0.5486 80 0.15309 0.2794 4000 0.06948 0.1575

16 0.31639 0.5258 100 0.14314 0.2648 5000 0.06739 0.1543

17 0.30365 0.5061 125 0.13444 0.2521 10,000 0.06163 0.1457

21



NSWC/WOL TR 77-134

An Approximation for Multi-Level or Scattered Data. At times it may be
advantageous to analyze Go/No-Go data, either scattered or stratified in some
multi-level array, by an adaptation of the Two-Level analysis methods described
above. Utilization of this technique can be expected to yield a less precise
answer (without loss of conservatism), but it can be used to process what
otherwise might be intractable data.

5
For instance analysis of scattered data by the methods of Golub and Grubbs 5

or Hampton and Blum6 , requires that there be a zone of mixed response wherein
one or more of the fails are observed at a higher stimulus level than for at least
one fire. The methods in references 5 and 6 were developed for those cases where
the test stimuli for one reason or another cannot be restricted to a few discrete
levels. However, for experimental data wherein no mixed-response zone is generated,
such methods will not work. Our suggested solution is to form a synthetic Two-
Level Bruceton from the data by treating all of the fires as if they had occurred
at the highest stimulus level at which any fire was observed, and all of the fails
as if they had occurred at the lowest stimulus level at which any fail was observed.
Inherent in this manipulation is the assumption that the distribution function
increases monotonically--if an explosive device functioned at level x, then it
certainly would have functioned at any level > x; and if an explosive device failed
at level y, it certainly would have failed at any level < y.

Collecting the data into the two levels in this manner obviously introduces
an error into the final estimate, since the data used in computation have been
shifted from their true values. The error, however, is not random; its nature
is to maximize the estimate of the variability parameter. That the variability
estimate is maximized is intuitively evident from the nature of the equation for
the second moment of the distribution function about the mean. Desk top
demonstration experiments have been performed (and could be made by the reader)
by generating various Bruceton patterns, artificially, all with the same N but
with varying concentrations about the mean. The above utilization of the
Two-Level algorithm also can be evaluated by similar procedure.

We suggest another possible application for this approximation. Oftentimes
the analysis of Go/No-Go data requires the use of iterative computational
procedures. Should a computer and appropriate software be not available to perform
an otherwise quite tedious and lengthy set of calculations the data could be
transformed and processed by the Two-Level Bruceton approximation just described.

5 Golub, Abraham, and Grubbs, Frank E., "Analysis of Sensitivity Experiments
when the Levels of Stimulus Cannot be Controlled," Jour. of the Amer. Stat.
(Assoc., 51(1956), 257-265.

6 Hampton, L. D, and Blum, G. D. "Maximum Likelihood Logistic Analysis of

Scattered Go/No-Go (Quantal) Data," NOLTR 64-238, 25 Aug. 1965.
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CONCLUSIONS

A method has been developed for the logistic and Gaussian probability systems
of determining the maximum possible value of the variability parameter for any
given confidence level as a function of N, the number of fires in the highest
level or the number of fails in the lowest level. We have calculated the maximum
values of the variability parameter at 95% single-sided confidence for values
of N from five to one million for symmetrical Brucetons and have made available
the method of calculation.

Suggestions have been made, whereby the Two/Three-Level Bruceton method
could be used as a quick way of approximating an analysis, or even a method of
treating intractable data.

23



NSWC/WOL TR 77-134

REFERENCES

1. Statistical Research Group, Princeton University, "Statistical Analysis
for a New Procedure in Sensitivity Experiments", AMP Report 101.1R, SRG-P
No. 4, (OSRD Report 4040), July 1944.

2. L. D. Hampton, G. D. Blum, and J. N. Ayres,."Logistic Analysis of Bruceton
Data," NOLTR 73-91, July 1973.

3. J. N. Ayres, L. D. Hampton, I. Kabik, and A. D. Solem, "VARICOMP: A Method
for Determining Detonation Transfer Probabilities," NAVWEPS Report 7411,
July 1961.

4. J. R. Cooke, Mark T. Lee, and J. P. Vanderbeck, "Binomial Reliability Table
(Lower Limits for the Binomial Distribution)," NAVWEPS Report 8090, January
1964.

5. Abraham Golub and Frank E. Grubbs, "Analysis of Sensitivity Experiments
when the Levels of Stimulus Cannot be Controlled," Jour. of the Amer. Stat.
(Assoc., 51(1956), 257-265.

6. L. D. Hampton and G. D. Blum, "Maximum Likelihood Logistic Analysis of
Scattered Go/No-Go (Quantal) Data," NOLTR 64-238, 25 Aug. 1965.

24



NSWC/WOL TR 77-134

APPENDIX A

The methods used to calculate: m, the estimated mean or 50% response
point; M, the intermediate parameter for estimating the variability parameter;
and D, the positive difference between m and the nearest testing level are to
be found in reference (1) of main report.

In the "Background and Discussion" section of this report, it was stated
that for conventional analyses of Two- and symmetrical Three-Level Bruceton data
the estimate of the variability parameter is indeterminate. The demonstrations
below are couched in the language of NOLTR 73-91* which deals with the logistic
distribution function. That the same indeterminacy exists when the Gaussian
(normal) distribution is assumed has been described in the original derivation
of the Bruceton method.**

For a Two-Level Bruceton.
.2

Y i n n in i n
X 0 X X

2 1 K 0 K K

1 0 0 K 0 0

En =N=K Zin =A-K Ei 2n =B=K
x x x

m Y o+ .5( 1 + -. 5)

=1.5

M ~/A\2 K K\N = - = i -

=0

D =.5

where Y is the stimulus value,

i is the stimulus index,
A,

*see reference 2 of main report.
**see reference 1 of main report.

A- 1
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Y. is the stimulus value whose index is i.
1

n is the number of fires,x

n is the number of fails,0

n . is the number of fires at Y.,

L is the total number of levels,

S = Y the step size,
0

L- 1
N = n.,N nxii,

i=O

L-1A L= in., and

i-0

L-1 .2
B i - n.

i-0

For D = .5 and M = 0, , the correction to M, is not defined.

For a symmetrical Three-Level Bruceton,

Y i n n in i2n
x 0 x x

3 2 K 0 2K 4K

.2 1 K K K K

1 0 0 K 0 0

N = 2K A = 3K B = 5K

m= 1 + (3K) - .5

=2

M 5K= 2.5 - 2.25 = 0.25
2K (2

D=0

For D = 0 and M = .25, 6, the correction to M is not defined.

If 6 is not defined, g, the estimate of the variability parameter, is
indeterminate.

A-2
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APPENDIX B

Alternate Derivation of the Equation for G

The probability (p) of observing j fires out of j shots at level L and

k fails out of k shots at level Lo, at a confidence level of 95%, is X

p = pxiqok = (.05)2 (B-I)

where Px is the probability of a given unit firing at level Lx and q is the
probability of a given unit not firing at level L 0

If we assume that the units being tested belong to the Logistic Probability
System,

S1 e xp(2x) (B-2)

q = 1 (B-3)
0 1+ exp(Yx)

2 L x m (B-4)

x G

L - m91 0 G (B-5)
o G

where m is the estimate of the mean, and

G is the 95% single-sided confidence limit for the upper bound of all
possible values of the variability parameter, y.

Using the Maximum Likelihood Equation,

j k
x 0

This system of equations is solvable. Taking the partial derivative of L with
respect to m, and setting it equal to zero to obtain the maximum of the
likelihood, L, yields:

B-i
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B-L = L a."x + k*0 = 0 (B-6)
\x 0

But,

aP x aPx atx;-= - q•" - G (B-7)

and,
q = 0 -a m03 0= qo p/G 

(B-8)

where qx is the probability of a given unit not firing at level Lx, qx = 1 -Px

and p is the probability of a given unit firing at level L0 , Po = 1 - qo".

Substituting equations (B-7) and (B-8) into equation (B-6) and rearranging gives:

j(l - =Jqx = kp0  (B-9)

Therefore,

kS=1 Po (B-10)

Equations (B-3) and (B-10) can be substituted into (B-i) to give:

k exp( 0)Ik ( .05) / 1B 12
- " T+ exp(I 0 + exp ) () (B-il)

The kth root of both sides is:

1_k_ ,=(xp(.0  j(k-12

I + exp(Lo) 1 ( I + exp( ) (.0 5 ) (B-12)

Equation (B-12) can be solved for to by an iterative method. ix can be calculated

by using equations (B-10) and (B-3). Solving equations (B-4) and (B-5) for m,

equating and solving for G, we get:

L -L

G = x (B-13)
0

In the special case where k equals j (the number of fails equals the number of

fires),

Px -p = q (B-14)

B-2
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By equations (B-2) and (B-3),

£ - (B-15)x 0

Inserting (B-15) into (B-5) and equating to (B-4), we get:

L +L
m = (B-16)

Equation (B-12) becomes:

1 (.05)2/k (B-17)
"1 + exp( ) 0o

Solving equation (B-17) for £o and (B-15) for kx' we get:

i -In [(.05)iI/k]+ In [I- (.0 5 )I/k] (B-18)

and,

P, = -in [(.05)I/k]+ In [I - (.0 5 )I/k] (B-19)

The substitution of equations (B-18) and (B-19) into (B-13) yields:

L -L
[ix - (B-20)

2 In (.0 5 )I/k] -In [I- (. 0 5 )I/k]

We shall define X to be the spacing between the upper level, Lx, and the mean.
By (B-16), X equals one half the spacing between Lx and L i.e.,

X=L =m (L - L ) (B-21)

Substituting (B-21) into (B-29) we obtain:

y95 = In [(05)i/k] X [i 1 (. 0 5 )i/k] (B-22)

which is the same as equation (7) Q.E.D.

B-3/B-4
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